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1. Introduction

Extension of integrable systems and soliton theories to non-commutative (NC) space-

times1 have been studied by many authors for the last couple of years and various kind of

integrable-like properties have been revealed [1, 2]. This is partially motivated by recent

developments of NC gauge theories on D-branes. In the NC gauge theories, NC extension

corresponds to introduction of background magnetic fields and NC solitons are, in some

situations, just lower-dimensional D-branes themselves. Hence exact analysis of NC soli-

tons just leads to that of D-branes and various applications to D-brane dynamics have been

successful [3]. In this sense, NC solitons plays important roles in NC gauge theories.

Most of NC integrable equations such as NC KdV equations apparently belong not to

gauge theories but to scalar theories. However now, it is proved that they can be derived

from NC anti-self-dual (ASD) Yang-Mills equations by reduction [4], which is first conjec-

tured explicitly by the author and K. Toda [5]. (Original commutative one is proposed by

R. Ward [6] and hence this conjecture is sometimes called NC Ward’s conjecture.) There-

fore analysis of exact soliton solutions of NC integrable equations could be applied to the

corresponding physical situations in the framework of N=2 string theory [7 – 9].

Furthermore, some soliton equations describe real phenomena such as shallow water

waves in fluid dynamics, optics and so on. If noncommutativity in space-time affects soliton

dynamics, then we can check whether our universe is noncommutative or not by comparing

experimental results and estimate the strength or the upper bound of the noncommutativity

1In the present paper, the word “NC” always refers to generalization to noncommutative spaces, not to

non-abelian and so on.
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Hence, construction and analysis of exact multi-soliton solutions are worth studying

from various viewpoints of integrable systems, string theory, and perhaps detection of

noncommutativity in our universe.

Exact multi-soliton solutions of noncommutative KP hierarchy are constructed by

Etingof, Gelfand and Retakh in 1997 [10], where quasi-determinants play crucial roles.

(For other applications of quasi-determinants to noncommutative integrable systems, see

e.g. [11 – 14].) However, their discussion is general and explicit analysis of the behavior of

their soliton solutions has not yet been done. Paniak also constructs multi-soliton solutions

of NC KP and KdV equations (not hierarchies) and studies the scattering process [15].2

However, the discussion about the soliton dynamics is mainly focused on two-soliton scat-

terings.

In this paper, we study exact multi-soliton solutions of NC integrable hierarchies in

terms of quasi-determinants of Wronski matrices, which is developed by Etingof, Gelfand

and Retakh. We analyze the asymptotic behavior of the multi-soliton solutions and found

that the asymptotic configurations can be real-valued though NC fields take complex values

in general. The behavior in soliton scatterings is all the same as commutative ones, that is,

the N -soliton solution has N isolated localized energy densities and the each wave-packet

preserve its shape and velocity in the scattering process. The phase shift is also the same

as commutative one.

This paper is organized as follows. In section 2, we make a brief introduction to NC

field theory in star-product formalism. In section 3 and 4, we review definition and some

properties of quasi-determinants and their applications to construction of multi-soliton

solutions of NC integrable hierarchy in star-product formalism. In the end of section

4, we introduce NC toroidal Gelfand-Dickey (GD) hierarchy and give exact multi-soliton

solutions which are new. In section 5, we discuss the asymptotic behavior of them in detail.

Section 6 is devoted to conclusion and discussion.

2. NC field theory in the star-product formalism

NC spaces are defined by the noncommutativity of the coordinates:

[xi, xj ] = iθij, (2.1)

where the constant θij is called the NC parameter. If the coordinates are real, NC pa-

rameters should be real. Because the rank of the NC parameter is even, dimension of NC

space-times must be more than two. Hence in this paper, we deal not with integrable

systems in (0 + 1)-dimension such as the Painlevé equation, but with ones in (1 + 1) or

(2 + 1)-dimension such as the KdV and KP equations. In (1 + 1)-dimension, we can take

only space-time noncommutativity as [t, x] = iθ. In (2+1)-dimension, there are essentially

two kind of choices of noncommutativity, that is, space-space noncommutativity: [x, y] = iθ

and space-time noncommutativity: [t, x] = iθ or [t, y] = iθ, where the coordinates (x, y)

and t correspond to space and time coordinates, respectively.

2Dimakis and Müller-Hoissen present perturbative corrections with respect to a noncommutative pa-

rameter in 2-soliton scatterings of the NC KdV equation [16] before the Paniak’s work.

– 2 –



J
H
E
P
0
2
(
2
0
0
7
)
0
9
4

NC field theories are given by the replacement of ordinary products in the commutative

field theories with the star-products and realized as deformed theories from the commutative

ones. The star-product is defined for ordinary fields on flat spaces, explicitly by

f ? g(x) := exp

(
i

2
θij∂

(x′)
i ∂

(x′′)
j

)

f(x′)g(x′′)
∣
∣
∣
x′=x′′=x

= f(x)g(x) +
i

2
θij∂if(x)∂jg(x) + O(θ2), (2.2)

where ∂
(x′)
i := ∂/∂x′i and so on. This explicit representation is known as the Moyal prod-

uct [17]. The ordering of fields in nonlinear terms are determined so that some structures

such as gauge symmetries and Lax representations should be preserved.

The star-product has associativity: f ? (g ?h) = (f ?g)?h, and reduces to the ordinary

product in the commutative limit: θij → 0. The modification of the product makes the

ordinary spatial coordinate “noncommutative,” that is, [xi, xj ]? := xi ? xj − xj ? xi = iθij.

We note that the fields themselves take c-number values as usual and the differenti-

ation and the integration for them are well-defined as usual. A nontrivial point is that

NC field equations contain infinite number of derivatives in general. Hence the integra-

bility of the equations are not so trivial as commutative cases, especially for space-time

noncommutativity.

3. Brief review of quasi-determinants

In this section, we make a brief introduction of quasi-determinants introduced by Gelfand

and Retakh [18, 19] and present a few properties of them which play important roles in

the following sections. The detailed discussion is seen in e.g. [20, 21]. Relation between

quasi-determinants and NC symmetric functions is seen in e.g. [22].

Quasi-determinants are not just a generalization of usual commutative determinants

but rather related to inverse matrices. From now on, we suppose existence of all the

inverses.

Let A = (aij) be a N × N matrix and B = (bij) be the inverse matrix of A, that is,

A?B = B ?A = 1. Here all products of matrix elements are supposed to be star-products,

though the present discussion hold for more general situation where the matrix elements

belong to a noncommutative ring.

Quasi-determinants of A are defined formally as the inverse of the elements of B = A−1:

|A|ij := b−1
ji . (3.1)

In the commutative limit, this is reduced to

|A|ij −→ (−1)i+j det A

det Ãij
, (3.2)

where Ãij is the matrix obtained from A deleting the i-th row and the j-th column.
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We can write down more explicit form of quasi-determinants. In order to see it, let us

recall the following formula for a block-decomposed square matrix:

(

A B

C D

)−1

=

(

(A − B ? D−1 ? C)−1 −A−1 ? B ? (D − C ? A−1 ? B)−1

−(D − C ? A−1 ? B)−1 ? C ? A−1 (D − C ? A−1 ? B)−1

)

,

where A and D are square matrices. We note that any matrix can be decomposed as a

2 × 2 matrix by block decomposition where one of the diagonal parts is 1 × 1. Then the

above formula can be applied to the decomposed 2×2 matrix and an element of the inverse

matrix is obtained. Hence quasi-determinants can be also given iteratively by:

|A|ij = aij −
∑

i′(6=i),j′(6=j)

aii′ ? ((Ãij)−1)i′j′ ? aj′j

= aij −
∑

i′(6=i),j′(6=j)

aii′ ? (|Ãij |j′i′)
−1 ? aj′j. (3.3)

It is sometimes convenient to represent the quasi-determinant as follows:

|A|ij =

a11 · · · a1j · · · a1n
...

...
...

ai1 aij ain

...
...

...

an1 · · · anj · · · ann

. (3.4)

Examples of quasi-determinants are, for a 1 × 1 matrix A = a

|A| = a,

and for a 2 × 2 matrix A = (aij)

|A|11 =
a11 a12

a21 a22
= a11 − a12 ? a−1

22 ? a21, |A|12 =
a11 a12

a21 a22
= a12 − a11 ? a−1

21 ? a22,

|A|21 =
a11 a12

a21 a22
= a21 − a22 ? a−1

12 ? a11, |A|22 =
a11 a12

a21 a22
= a22 − a21 ? a−1

11 ? a12,

and for a 3 × 3 matrix A = (aij)

|A|11 =

a11 a12 a13

a21 a22 a23

a31 a32 a33

= a11 − (a12, a13) ?

(

a22 a23

a32 a33

)−1

?

(

a21

a31

)

= a11 − a12 ?
a22 a23

a32 a33

−1

? a21 − a12 ?
a22 a23

a32 a33

−1

? a31

− a13 ?
a22 a23

a32 a33

−1

? a21 − a13 ?
a22 a23

a32 a33

−1

? a31,

and so on.
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4. Exact soliton solutions of NC integrable hierarchies

In this section, we give exact multi-soliton solutions of several NC integrable hierarchies in

terms of quasi-determinants. In the commutative case, determinants of Wronski matrices

play crucial roles. In the NC case, these determinants are just replaced with the quasi-

determinants. We review foundation of the NC KP hierarchy and the l-reduced hierarchies

(so called NC GD hierarchies or NC lKdV hierarchies), and present the exact multi-soliton

solutions of them developed by Etingof, Gelfand and Retakh [10]. Finally we extend their

discussion to the NC toroidal GD hierarchy.

An N -th order pseudo-differential operator A is represented as follows

A = aN∂N
x + aN−1∂

N−1
x + · · · + a0 + a−1∂

−1
x + a−2∂

−2
x + · · · , (4.1)

where ai is a function of x associated with noncommutative associative products (here,

the Moyal products). When the coefficient of the highest order aN equals to 1, we call it

monic. Here we introduce useful symbols:

A≥r := ∂N
x + aN−1∂

N−1
x + · · · + ar∂

r
x, (4.2)

A≤r := A − A≥r+1 = ar∂
r
x + ar−1∂

r−1
x + · · · . (4.3)

The action of a differential operator ∂n
x on a multiplicity operator f is formally defined

as the following generalized Leibniz rule:

∂n
x · f :=

∑

i≥0

(

n

i

)

(∂i
xf)∂n−i, (4.4)

where the binomial coefficient is given by

(

n

i

)

:=
n(n − 1) · · · (n − i + 1)

i(i − 1) · · · 1
. (4.5)

We note that the definition of the binomial coefficient (4.5) is applicable to the case for

negative n, which just define the action of negative power of differential operators.

The composition of pseudo-differential operators is also well-defined and the total set

of pseudo-differential operators forms an operator algebra. For a monic pseudo-differential

operator A, there exist the unique inverse A−1 and the unique m-th root A1/m which

commute with A. (These proofs are all the same as commutative ones.) For more on

pseudo-differential operators and Sato’s theory, see e.g. [23 – 26].

In order to define the NC KP hierarchy, let us introduce a Lax operator:

L = ∂x + u2∂
−1
x + u3∂

−2
x + u4∂

−3
x + · · · , (4.6)

where the coefficients uk (k = 2, 3, . . .) are functions of infinite coordinates ~x := (x1, x2, . . .)

with x1 ≡ x:

uk = uk(x1, x2, . . .). (4.7)
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The noncommutativity is introduced into the coordinates (x1, x2, . . .) as eq. (2.1) here.

The NC KP hierarchy is defined in Sato’s framework as

∂mL = [Bm, L]? , m = 1, 2, . . . , (4.8)

where the action of ∂m := ∂/∂xm on the pseudo-differential operator L should be in-

terpreted to be coefficient-wise, that is, ∂mL := [∂m, L]? or ∂m∂k
x = 0. The differential

operator Bm is given by

Bm := (L ? · · · ? L
︸ ︷︷ ︸

m times

)≥0 =: (Lm)≥0. (4.9)

The KP hierarchy gives rise to a set of infinite differential equations with respect to infinite

kind of fields from the coefficients in eq. (4.8) for a fixed m. Hence it contains huge amount

of differential (evolution) equations for all m. The l.h.s. of eq. (4.8) becomes ∂muk which

shows a kind of flow in the xm direction. In the x2-flow equations, we can see that infinite

kind of fields u3, u4, u5, . . . are represented in terms of one kind of field u2 [27, 28].

If we put the constraint (Ll)≤−1 = 0 or equivalently Ll = Bl on the NC KP hierar-

chy (4.8), we get a reduced NC KP hierarchy which is called the l-reduction of the NC KP

hierarchy, or the NC lKdV hierarchy, or the l-th NC Gelfand-Dickey hierarchy. Especially,

the 2-reduction of the NC KP hierarchy is just the NC KdV hierarchy. Explicit examples

are seen in e.g. [28]. (See also [29 – 31].)

Now we construct multi-soliton solutions of the NC KP hierarchy. Let us introduce

the following functions,

fs(~x) = e
ξ(~x;αs)
? + ase

ξ(~x;βs)
? , (4.10)

where

ξ(~x;α) = x1α + x2α
2 + x3α

3 + · · · , (4.11)

and αs, βs and as are constants. Star exponential functions are defined by

e
f(x)
? := 1 +

∞∑

n=1

1

n!
f(x) ? · · · ? f(x)
︸ ︷︷ ︸

n times

. (4.12)

An N -soliton solution of the NC KP hierarchy (4.8) is given by [10],

L = ΦN ? ∂xΦ−1
N , (4.13)

where

ΦN ? f = |W (f1, . . . , fN , f)|N+1,N+1,

=

f1 f2 · · · fN f

f ′
1 f ′

2 · · · f ′
N f ′

...
...

. . .
...

...

f
(N−1)
1 f

(N−1)
2 · · · f

(N−1)
N f (N−1)

f
(N)
1 f

(N)
2 · · · f

(N)
N f (N)

. (4.14)

– 6 –
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The Wronski matrix W (f1, f2, · · · , fm) is given by

W (f1, f2, · · · , fm) :=









f1 f2 · · · fm

f ′
1 f ′

2 · · · f ′
m

...
...

. . .
...

f
(m−1)
1 f

(m−1)
2 · · · f

(m−1)
m









, (4.15)

where f1, f2, · · · , fm are functions of x and f ′ := ∂f/∂x,f ′′ := ∂2f/∂x2,f (m) := ∂mf/∂xm

and so on.

In the commutative limit, ΦN ? f is reduced to

ΦN ? f −→
detW (f1, f2, . . . , fN , f)

det W (f1, f2, . . . , fN )
, (4.16)

which just coincides with commutative one [25]. In this respect, quasi-determinants are fit

to this framework of the Wronskian solutions.

From eq. (4.13), we have a more explicit form as

u2 = ∂x

(
N∑

s=1

W ′
s ? W−1

s

)

, (4.17)

where

Ws := |W (f1, . . . , fs)|ss. (4.18)

The l-reduction condition (Ll)≤−1 = 0 or Ll = Bl is realized at the level of the soliton

solutions by taking αl
s = βl

s or equivalently αs = εβs for s = 1, · · · , N , where ε is the l-th

root of unity.

The present discussion is straightforwardly applicable for NC versions of the matrix KP

hierarchy [32, 24, 25], the toroidal (matrix) GD hierarchy [33 – 38] and the (2-dimensional)

Toda lattice hierarchy [39] formulated by pseudo-differential operators, because on commu-

tative spaces, their exact soliton solutions are described by determinants of (generalized)

Wronski matrices.

For example, we can give exact N -soliton solutions of the NC toroidal lKdV hierarchy

(l ≥ 2)3 which is defined as follows.

First, we introduce two kind of infinite variables ~x = (x1, x2, · · ·) and ~y :=

(y0, yl, y2l, · · ·) with (x, y) ≡ (x1, y0). Noncommutativity is introduced into these coor-

dinates. Next let us define two kind of Lax operators with respect to x, that is, an l-th

order differential operator P = (L)l≥0 and a 0-th order pseudo-differential operator Q,

where the coefficients depend on the two kind of infinite variables. An differential operator

3Toroidal lKdV hierarchy is one of generalizations of lKdV hierarchy and first studied by Bogoyavlen-

skii [33] for l = 2 and developed by Billig, Iohara, Saito, Wakimoto, Ikeda and Takasaki where the symmetry

of the solution space is revealed to be described in terms of a toroidal Lie algebra, that is, a central exten-

sion of double loop algebra G
tor = SL

tor
l [35 – 37]. Hence we call it toroidal lKdV hierarchy or toroidal GD

hierarchy in the present paper.

– 7 –
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Cml is also introduced in terms of P and Q as Cml := −(Pm ? Q)≥0. Then we can obtain

the NC toroidal lKdV hierarchy:

∂P

∂xm
= [Bm, P ]? ,

∂Q

∂xm
= [Bm, Q − ∂y]? ,

∂P

∂yml
= [Pm∂y + Cml, P ]? ,

∂Q

∂yml
= [Pm∂y + Cml, Q − ∂y]? .

(4.19)

For l = 2, this includes the NC Calogero-Bogoyavlenskii-Schiff equation [40].

The N -soliton solution is given by

P = ΦN ? ∂l
xΦ−1

N , Q = (∂yΦN ) ? Φ−1
N , (4.20)

where the arguments in ΦN is modified as follows:

fs(~x, ~y) := e
ξrs (~x,~y;αs)
? + ase

ξrs(~x,~y;βs)
? , (4.21)

ξr(~x, ~y;α) := ξ(~x;α) + rξ(~y;α)

= x1α + x2α
2 + x3α

3 + · · · + ry0 + rylα
l + ry2lα

2l + · · · , (4.22)

with αl
s = βl

s, where r is a constant. The proof is the same as the commutative one. (For

the details, see section 5.1 in [37].) A key point of the proof is to show the evolution

equations of ΦN :

∂ΦN

∂xm
= −(ΦN∂m

x Φ−1
N )≤−1 ? ΦN = Bm ? ΦN − ΦN∂m

x ,

∂ΦN

∂yml
= (Pm ? Q)≤−1 ? ΦN = (Pm∂y + Cml) ? ΦN ,

where the following property of quasideterminant plays crucial roles:

ΦN ? fs = |W (f1, . . . , fN , fs)|N+1,N+1 = 0, for s = 1, · · · , N.

This hierarchy generally gives rise to (2 + 1)-dimensional integrable equations where space

and time coordinates are (x, y) and some other coordinate, respectively.

5. Asymptotic behavior of the exact soliton solutions

In this section, we discuss asymptotic behavior of the multi-soliton solutions at spatial

infinity or infinitely past and future. In the star-product formalism, all coordinates are

regarded as c-numbers and hence we can plot the configurations as usual and interpret the

positions of localized wave packets, effect of coordinate shifts and so on as usual. Here we

restrict ourselves to NC KdV and KP hierarchies, however, this observation would be also

applicable to other NC hierarchies.

First, we present some special properties of the star exponential functions relevant to

behavior of NC soliton solutions. In this section, we restrict ourselves to a specific equation

on (2+1) or (1+1)-dimensional space-time and noncommutativity should be introduce to

some two specific space-time coordinates. Let us suppose that the specified NC coordinates

are denoted by xi and xj (i < j) which satisfies [xi, xj ]? = iθ.

– 8 –
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First, let us comment on an important formula which is relevant to one-soliton solu-

tions. Defining new coordinates z := xi + vxj , z̄ := xi − vxj , we can easily see

f(z) ? g(z) = f(z)g(z) (5.1)

because the Moyal-product (2.2) is rewritten in terms of (z, z̄) as [41]

f(z, z̄) ? g(z, z̄) = eivθ(∂z̄′∂z′′−∂z′∂z̄′′ )f(z′, z̄′)g(z′′, z̄′′)
∣
∣
∣ z′ = z′′ = z

z̄′ = z̄′′ = z̄.

(5.2)

Hence NC one soliton-solutions are essentially the same as commutative ones for both

space-time and space-space noncommutativity cases.

When f(x) is a linear function, the treatment of e
f(x)
? becomes easy as follows:

(e
ξ(~x;α)
? )−1 = e

−ξ(~x;α)
? , (5.3)

∂xe
ξ(~x;α)
? = αe

ξ(~x;α)
? . (5.4)

The proof can be seen as well from the fact that because of eq. (5.2), the star exponential

function of a linear function itself reduces to commutative one, that is, e
ξ(~x,α)
? = eξ(~x,α).

These formula are crucial in discussion on asymptotic behavior of N -soliton solutions.

Furthermore, the Baker-Campbell-Hausdorff (BCH) formula implies

e
ξ(~x;α)
? ? e

ξ(~x;β)
? = e(i/2)θ(αiβj−αjβi)e

ξ(~x;α)+ξ(~x;β)
? . = eiθ(αiβj−αjβi)e

ξ(~x;β)
? ? e

ξ(~x;α)
? . (5.5)

The factor (i/2)θ(αiβj −αjβi) can be absorbed by a coordinate shift in ξ(~x;α), and hence

there is a possibility that noncommutativity might affect coordinate shifts by the factor

such as phase shifts in the asymptotic behavior. When coordinates and fields are treated as

complex, such a coordinate shift by a complex number causes no problem. However, if we

want to apply NC integrable equations to real phenomena, such as, shallow water waves,

then it becomes hard to interpret physically. Let us see what happens in the asymptotic

region.

5.1 Asymptotic behavior of NC KdV hierarchy

First, let us discuss the NC KdV hierarchy and the asymptotic behavior of the N -soliton

solutions. The NC KdV hierarchy is the 2-reduction of the NC KP hierarchy and realized by

putting βs = −αs on the N -soliton solutions of the NC KP hierarchy. Here the constants

αs and as are non-zero real numbers and as is positive. Because of the permutation

property of the columns of quasi-determinants (cf. section 1.1 in [18]), we can assume

α1 < α2 < · · · < αN .

In the NC KdV hierarchy, the x2n-th flow becomes trivial and in the x2n+1-th flow

equation, space and time coordinates are specified as (x, t) ≡ (x1, x2n+1).

Now let us define a new coordinate x̃ := x + α2n
I t comoving with the I-th soliton and

take t → ±∞ limit.4 Then, because of x+α2n
s t = x+α2n

I t+(α2n
s −α2n

I )t, either e
αs(x+α2n

s t)
?

4Such kind of observation for soliton scatterings in NC integrable equations is first seen in [42]. (See

also [2].)
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or e
−αs(x+α2n

s t)
? goes to zero for s 6= I. Hence the behavior of fs becomes at t → +∞:

fs(~x) −→







ase
−αs(x+α2n

s t)
? s < I

e
αI (x+α2n

I t)
? + aIe

−αI (x+α2n
I t)

? s = I

e
αs(x+α2n

s t)
? s > I,

(5.6)

and at t → −∞:

fs(~x) −→







e
αs(x+α2n

s t)
? s < I

e
αI (x+α2n

I t)
? + aIe

−αI (x+α2n
I t)

? s = I

ase
−αs(x+α2n

s t)
? s > I.

(5.7)

We note that the s-th (s 6= I) column is proportional to a single exponential function

e
±αs(x+α2

st)
? due to eq. (5.4). Because of the multiplication property of columns of quasi-

determinants (cf. section 1.2 in [18]), we can eliminate a common invertible factor from the

s-th column in |A|ij where s 6= j. (Note that this exponential function is actually invertible

as is shown in eq. (5.3).) Hence the N -soliton solution becomes the following simple form

where only the I-th column is non-trivial, at t → +∞:

ΦN ? f →

1 · · · 1 e
ξ(~x;αI)
? + aIe

−ξ(~x;αI)
? 1 · · · 1 f

−α1 · · · −αI−1 αI(e
ξ(~x;αI)
? − aIe

−ξ(~x;αI)
? ) αI+1 · · · αN f ′

...
...

...
...

...
...

(−α1)
N−1

· · · (−αI−1)
N−1 αN−1

I (e
ξ(~x;αI)
? + (−1)N−1aIe

−ξ(~x;αI)
? ) αN−1

I+1 · · · αN−1
N f (N−1)

(−α1)
N

· · · (αI−1)
N αN

I (e
ξ(~x;αI)
? + (−1)NaIe

−ξ(~x;αI)
? ) αN

I+1 · · · αN
N f (N)

,

and at t → −∞:

ΦN ? f →

1 · · · 1 e
ξ(~x;αI)
? + aIe

−ξ(~x;αI)
? 1 · · · 1 f

α1 · · · αI−1 αI(e
ξ(~x;αI)
? − aIe

−ξ(~x;αI)
? ) −αI+1 · · · −αN f ′

...
...

...
...

...
...

αN−1
1 · · · αN−1

I−1 αN−1
I (e

ξ(~x;αI)
? + (−1)N−1aIe

−ξ(~x;αI)
? ) (−αI+1)

N−1
· · · (−αN)N−1 f (N−1)

αN
1 · · · αN

I−1 αN
I (e

ξ(~x;αI)
? + (−1)NaIe

−ξ(~x;αI)
? ) (−αI+1)

N
· · · (−αN )N f (N)

.

Here we can see that all elements in between the first column and the N -th column

commute and depend only on x + α2n
I t in ξ(~x;αI), which implies that the corresponding

asymptotic configuration coincides with the commutative one,5 that is, the I-th one-soliton

configuration with some coordinate shift so called the phase shift. The commutative dis-

cussion has been studied in this way by many authors, and therefore, we conclude that for

the NC KdV hierarchy, asymptotic behavior of the multi-soliton solutions is all the same

as commutative one, and as the results, the N -soliton solutions possess N localized energy

densities and in the scattering process, they never decay and preserve their shapes and ve-

locities of the localized solitary waves. The phase shifts also occur by the same degree as

commutative ones.

5Note that because f is arbitrary, there is no need to consider the products between a column and the

(N + 1)-th column. This observation for asymptotic behavior can be made from eq. (4.17) also.
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Finally, we make a brief comment on the 2-soliton solutions. In this situation,

space-time dependence appears only as two kind of exponential factors e±α1(x+α2n
1 t)

and e±α2(x+α2n
2 t). Noncommutativity of them could have effects by the factor

e±(i/2)α1α2(α2n
1 −α2n

2 )θ because of the BCH formula. However, if the two kind of parame-

ters satisfy

1

2
α1α2(α

2n
1 − α2n

2 )θ = 2πk, (5.8)

where k is an non-zero integer, then, the effects of noncommutativity perfectly disappear at

the every stage of calculations and the behavior of the 2-soliton solution perfectly coincides

with that of commutative one at any time and any location. However the condition (5.8)

is given specially by hand, and the mathematical and physical meaning of this observation

is still unknown.

5.2 Asymptotic behavior of NC KP hierarchy

Now, let us discuss the NC KP hierarchy and the asymptotic behavior of the N -soliton

solutions. The space and time coordinates are (x, y, t) ≡ (x1, x2, xn) and noncommutativity

is introduced into some specified two coordinates among x, y and t. The specified NC

coordinates are also denoted by xi and xj with [xi, xj ]? = iθ. Here the constants αs and

βs are non-zero real numbers and the constant as will be redefined later.

As we mentioned at the beginning of the present section, one-soliton solutions are

all the same as commutative ones. However, we have to treat carefully for the NC KP

hierarchy. From eq. (4.17), naive one-soliton solution can be expressed as follows

u2 = ∂x

(

∂x(e
ξ(~x;α)
? + ae

ξ(~x;β)
? ) ? (e

ξ(~x;α)
? + ae

ξ(~x;β)
? )−1

)

= ∂x

(

(αi + aβi∆e
η(~x;α,β)
? ) ? (1 + a∆e

η(~x;α,β)
? )−1

)

, (5.9)

where

η(~x;α, β) := x(β − α) + y(β2 − α2) + t(βn − αn)

∆ := e
i
2
θ(αiβj−αjβi). (5.10)

We note that the factor ∆ can be absorbed by redefining a coordinate such as x → x +

(β − α)−1(i/2)θ(αiβj − αjβi). The final form of the solution depend only on xi(β
i
I −

αi
I) + xj(β

j
I − αj

I) for NC coordinates and the Moyal products disappear. Hence there

becomes no dependence of complex numbers, and the one-soliton solution is the same

as commutative one in this sense. However now we treat the coordinates as real and it

would be better to redefine a positive real number ã which satisfies a = ã∆−1, so that

f1 = e
ξ(~x;α)
? + ae

ξ(~x;β)
? =

(

1 + ãe
η(~x;α,β)
?

)

? e
ξ(~x;α)
? , in order to avoid such a coordinate shift

by a complex number.

This point becomes important for the multi-soliton solutions. The constants as in

the N -soliton solution of the NC KP hierarchy should be replaced with a positive real

number ãs which satisfies as = ãs∆
−1
s where ∆s := e(i/2)θ(αi

sβj
s−αj

sβi
s), because the N -

soliton configuration reduces to a (I-th) one-soliton configuration when we set αs = βs = 0

for all s(6= I).
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Let us define new coordinates comoving with the I-th soliton as follows:

p := x + αIy + αn−1
I t, q := x + βIy + βn−1

I t. (5.11)

Then the function ξ(x, y, t;αs) can be rewritten in terms of the new coordinates as

ξ(p, q, xr;αs) = A(αs)p + B(αs)q + C(αs)xr where xr is a specified coordinate among

x, y and t, and A(αs), B(αs) and C(αs) are real constants depending on αI , βI and αs. For

example, in the case of xr ≡ t, we can get from eq. (5.11)

(

x

y

)

=
1

βI − αI

(

βIp − αIq + αIβI(β
n−2
I − αn−2

I )t

−p + q + (αn−1
I − βn−1

I )t

)

, (5.12)

and find

ξ = x + αsy + αn−1
s t

=
βI − αs

βI − αI
p +

αs − αI

βI − αI
q +

{

αn−1
s +

αIβI(β
n−2
I − αn−2

I ) + αs(α
n−1
I − βn−1

I )

βI − αI

}

t.

Here we suppose that C(αs) 6= C(βs) which corresponds to pure soliton scatterings.6

Now let us take xr → ±∞ limit, then, for the same reason as in the NC KdV hierarchy,

we can see that the asymptotic behavior of fs becomes:

fs(~x) −→

{

Ase
ξ(~x;γs)
? s 6= I

e
ξ(~x;αI)
? + aIe

ξ(~x;βI)
? s = I

(5.13)

where As is some real constant whose value is 1 or as, and γs is a real constant taking

a value of αs or βs. As in the case of the NC KdV hierarchy, the s-th (s 6= I) column

is proportional to a single exponential function and we can eliminate this factor from the

s-th column. Hence in the asymptotic region xr → ±∞, the N -soliton solution becomes

the following simple form where only the I-th column is non-trivial:

ΦN ? f →

1 · · · 1 e
ξ(~x;αI)
? + aIe

ξ(~x;βI)
? 1 · · · 1 f

γ1 · · · γI−1 αIe
ξ(~x;αI )
? + aIβIe

ξ(~x;βI)
? γI+1 · · · γN f ′

...
...

...
...

...
...

γN−1
1 · · · γN−1

I−1 αN−1
I e

ξ(~x;αI)
? + aIβ

N−1
I e

ξ(~x;βI)
? γN−1

I+1 · · · γN−1
N f (N−1)

γN
1 · · · γN

I−1 αN
I e

ξ(~x;αI)
? + aIβ

N
I e

ξ(~x;βI)
? γN

I+1 · · · γN
N f (N)

=

1 · · · 1 1 + ãIe
η(~x;αI ,βI)
? 1 · · · 1 f

γ1 · · · γI−1 αI + ãIβIe
η(~x;αI ,βI)
? γI+1 · · · γN f ′

...
...

...
...

...
...

γN−1
1 · · · γN−1

I−1 αN−1
I + ãIβ

N−1
I e

η(~x;αI ,βI)
? γN+1

I+1 · · · γN−1
N f (N−1)

γN
1 · · · γN

I−1 αN
I + ãIβ

N
I e

η(~x;αI ,βI)
? γN

I+1 · · · γN
N f (N)

.

6The condition C(αs) = C(βs) could lead to soliton resonances in commutative case.
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Here we can see that all elements between the first column and the N -th column commute

and depend only on xi(β
i
I − αi

I) + xj(β
j
I − αj

I) for NC coordinates, which implies that the

corresponding asymptotic configuration coincides with the commutative one. Hence, we

can also conclude that for the NC KP hierarchy, asymptotic behavior of the multi-soliton

solutions is all the same as commutative one in the process of pure soliton scatterings, and

as the results, the N -soliton solutions possess N localized energy densities and in the pure

scattering process, they never decay and preserve their shapes and velocities of localized

solitary waves. Asymptotic behavior of two-soliton solution of NC KP equation studied by

Paniak [15] actually coincides with our result for n = 3, N = 2.

Now we restricted ourselves to the NC KP hierarchy, however, this observation would

be also true of other kind of NC hierarchies, such as, the (2-dimensional) NC Toda lattice

hierarchy [43], the NC toroidal GD hierarchy presented in section 4 and the NC matrix

KP hierarchy [44] because the soliton solutions could be represented by such kind of (gen-

eralized) Wronski matrices here, and the asymptotic analysis would be almost the same.

6. Conclusion and discussion

In this paper, we studied exact multi-soliton solutions of NC integrable hierarchies, includ-

ing NC KP and toroidal KP hierarchies and the reductions, in terms of quasi-determinants.

We found that the asymptotic behavior of them could be all the same as commutative ones

in the process of (pure) soliton scatterings. This implies that the exact soliton solutions

are actually solitons in the sense that the configuration has localized energy densities and

never decay, and the phase shifts also appear by the same degree as in the commutative

case.

It would be reasonable that there is no difference in asymptotic behavior of pure

soliton scatterings on between commutative and NC spaces, because in asymptotic region,

star-products reduce to ordinary commutative products and the effect of noncommutativity

disappears. These results imply that we cannot detect effects of noncommutativity of space-

time by observing such soliton dynamics. However, total behavior of them is unknown and

it is worth studying further to find different aspects of the NC soliton dynamics from

commutative ones.

Dynamics in soliton resonances is also interesting. From the present results of pure

soliton scatterings, we could naturally expect that the configurations in soliton resonances

would not be affected by noncommutativity in asymptotic region though we might need to

make further modifications in the multi-soliton solutions such as as = ãs∆
−1
s for the NC

KP equation. Quantum treatments of the soliton scatterings is also interesting, such as

properties of factorized S-matrix of NC sine-Gordon model [45]. Furthermore, the existence

of multi-soliton solutions is important in integrable systems and the present observations

might be a hint to reveal NC Hirota’s bilinearization, theory of tau-functions and the

structure of solution spaces.
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